
Discom Test Stand Communication 2024-02-28 Page 1 of 29
UNRESTRICTED

DISCOM TEST STAND COMMUNICATION

Content

Introduction .. 2
General test run sequence ... 2

TasAlyser command protocol .. 3
Observing the communication .. 3
Command Execution Timing ... 4

Standard Command Set .. 5
Test cycle .. 5
Test Parameters .. 6
Retrieving results .. 6
Retrieving reports ... 6
Status, special commands ... 7
Explanations for some commands .. 7
Comparing Handshake-Standard and Basic-Standard .. 10

Examples .. 11
Advanced Example ... 12
Test run timing ... 13

About the Result Codes .. 14

Settings and Test Mode .. 15

Command Decoder Plug-ins .. 16
Sending test stand errors: “ExtError” Plugin .. 16
Gear Shifting Plugin ... 17
Ratio Test Plugin .. 18
DummyCommands-Plugin ... 18
Get/Set Values Plugin .. 19
Trigger Parameters Plugin .. 22
Sensor Configuration Plugin .. 23
RecorderControl Plugin .. 24

Appendix: Serial, Profibus and UDP Communication ... 25
Serial Communication .. 25
Profibus/Profinet Communication .. 26
UDP Communication ... 27

Discom Test Stand Communication 2024-02-28 Page 2 of 29
UNRESTRICTED

Introduction
In a test stand environment, the measurement computer exchanges data with the test stand control
computer. The test stand control for example provides information on the current type (test instruction),
test step etc. The measurement system sends information like the evaluation result and reports.

The Discom measurement computer, or more specifically the measurement application TasAlyser,
communicates with text commands and replies. Text-based communication has three major advantages
compared to other interfaces like bit-parallel signals:

• Security: because the exchange of commands between measurement system and test stand can
be monitored directly, any errors in communication are easily detected. There is no doubt about
the timing or sequence of commands and missing or wrong commands are immediately
uncovered.

• Flexibility: The text-based protocol can easily be extended to new commands. On TasAlyser
side, a plug-in mechanism is used to realize special commands which are not needed in all test
stands. If the need for a new command or communication arises, this can be added to an
existing project without disrupting the existing and working command sequence.

• Independent from hardware: the usual means of exchanging the commands is either UDP
protocol going over the existing network connection, or serial RS232 line, which for decades
has proven its robustness. There is no extra hardware needed (for UDP) or the additional costs
are low (for serial). Another option is the use of Profibus, but still the communication uses text
commands. More details can be found in the Appendix of this document on page 25 ff.

In general, the measurement system works as a ‘slave’ system with respect to test stand control: The test
stand sends commands or requests, and the measurement system answers. There is no communication
initiated by the measurement system, so the test stand does not need to be aware of ‘asynchronous’ input
from TasAlyser.

This document in the first part describes the standard set of commands which can be used in any project.
After the command reference there are some examples on the usage in a complete test run. The standard
instruction set can be augmented by ‘plug-ins’ which handle additional commands. These plug-ins have
to be added to the project in the setup phase. The second part of this document describes plug-ins for
various purposes.

General test run sequence
Each test run (complete test of an assembly) follows this scheme:

1. Start of test run. The test stand control sends the name of the type of assembly (the “test
instruction” name) to start a new test run. This is called the “Insert”.

2. Test steps. The test run is separated into test steps, for example speed ramps. Each test step has
a name. Within the test run, test steps can be tested in arbitrary sequence, can be repeated or
omitted. A test step starts when the test stand control transmits the name of the test step and
ends with the beginning of the next test step.

3. End of test run. This has two phases: end of all test steps and end of test run. At “end of all test
steps”, the final result is fixed, at “end of test run” the measurement program stores the results
and can send them to the result data base. The “end of test run” is signaled by the “Remove”
command.

4. Querying of evaluation results: the test stand control can query the current evaluation result (OK
/ not OK) at any time. Even after “end of test run”, all results and reports for the last test run can
be queried.

Please also refer to the extended explanation on page 11. Also see the diagram on page 13.

Discom Test Stand Communication 2024-02-28 Page 3 of 29
UNRESTRICTED

TasAlyser command protocol
The TasAlyser application processes text commands and replies in form of text messages. The software
component which interprets the incoming texts is called the Command Decoder. A typical command
consists of a keyword, followed by a colon and arguments. All commands are acknowledged; most
replies consist of a single number (i.e. a digit), some have longer texts.

Example: the command “Serial: 345A6789” sets the serial number for the current unit under test. It
is acknowledged with “1” (the character ‘1’, not digital 1) if the serial number was set successfully and
“0” if the command could not be executed. Not all commands have arguments; in these cases the colon
may be omitted.

Between command (colon) and argument(s) any number of spaces is allowed. Upper/lower case writing
is distinguished: the command MEASURE: ON is not the command Measure: On.

Command lines which cannot be interpreted as valid commands are acknowledged by “?”.

The commands are transferred as text followed by end-of-line characters (cr/lf), and the reply is also
a text line (consisting for example of the single letter “1”) followed by end-of-line characters.

Command execution may not overlap. The test stand control has to wait for the reply to one command
(and evaluate the reply) before sending the next.

Execution time of most commands is well below ½ second. Only the commands Insert: and
Remove: (see list below) may take up to a few seconds for execution and acknowledgement.

Communication uses 8 bit characters in the currently active code page (regional settings).

Protocol Variants
This document describes the “Handshake Standard” protocol version, which differs from “Basic
Standard” protocol only in the replies to six commands.

For reasons of compatibility to older test stands, as a third option the “Dpm42” protocol can be selected
(see page 14). This old protocol is not subject of this document.

Observing the communication
The command based communication between test stand control and measurement system can be
observed and checked in the Output window. This window is usually docked to the lower edged of the
TasAlyser main window. Click on the Output tab to show that
window. Using the ‘pin’ on the upper right corner of the Output
window (see picture blow), you can keep it open.

In the ‘Communication’ tab of this window you can read the incoming and outgoing commands.
Incoming commands are preceded by the symbol →o and replies from the measurement system by o→.

Pin to keep the
window from hiding

Discom Test Stand Communication 2024-02-28 Page 4 of 29
UNRESTRICTED

Command Execution Timing
Execution time for the various commands depends on several circumstances. Some factors are
completely outside of control by the TasAlyser application, for example Windows network timeouts or
parallel execution of heavy loaded tasks like RAID system rebuild. Also hard disk drives going to sleep
due to energy saving settings can slow down execution of certain commands, since file access is delayed
until Windows woke up the according disk drive.

Therefore, the command execution times given here are just approximations and can never be
guaranteed. The best strategy is to allow for a long command timeout on test stand side, but
immediately react to TasAlyser command acknowledgements.

Typical execution times (see the following section on explanation about the commands and their
functions):

• Test run start (Insert:) can be finished in 3 seconds, but might take 10 seconds or even longer
under certain circumstances (for example because the user changed settings in the parameter
database). Send the Insert command as early in the test run as possible, thus allowing as much
time as possible for execution without losing cycle time.

• Test run end (Remove:) also will be finished after 3 seconds in most cases but can take up to 10
seconds if hard disk file access is slow or for other reasons. Use command EndOfTest to split
up execution time between both commands.

• Test step change (Mode:) needs about ½ second in most cases. Again, send the command as
early as possible in the test run to allow for a longer timeout. Be aware that the Mode command
must not be sent too early to avoid wrong triggering of measurement ramps. (For example, if the
test step is triggered by a rising rpm speed starting at 300 rpm, make sure that the speed stays
below that value when you send the Mode command until start of the actual ramp.)

• Result retrieval (Result, Report), information retrieval or inserting information (e.g. set serial
number) have answering times below 500 ms. External factors have less influence on these
operations, so the timing can be expected to be rather stable.

As explained above, the best strategy is to send the commands as early as possible, allowing for more
timeout.

Each command gets a reply as described with the individual commands later in this manual. When the
reply is sent, the command has been processed completely. The test stand control system must wait for
the reply and evaluate it before sending the next command.

Timing check and Log file
As shown on the previous page, you can observe the communication records in the Output window
(Communication section). Right-click within the window to call up a popup menu, then activate the
command Add time stamps in that menu to get the timing between incoming commands and outgoing
replies displayed.

The communication log from the output window is also recorded in a text file. This log file is located in
the folder
C:\Discom\Measurement\MulitRot\(ProjectName)\Locals\Logs\

After the log file has reached a certain size, it gets renamed by adding a date-time string, and a new file
is started. Therefore, the file without date-time in the name is the current one.

If you are having communication issues of any kind, not only timing, you should send this log file or the
whole folder (compressed) to Discom.

Discom Test Stand Communication 2024-02-28 Page 5 of 29
UNRESTRICTED

Standard Command Set
The tables below list all commands which are understood and executed by the TasAlyser Command
Decoder in standard configuration, and their replies in “Handshake Standard” protocol. If the replies in
“Basic Standard” are different, these are listed, too. Additional commands are interpreted by Decoder
plug-ins. Some plug-ins are described in the following sections.

When TasAlyser receives a command which is not understood (not by the standard Decoder nor by any
plug-in), it replies with “?”.

Some of the following commands need extra explanation. These commands are marked with (*) in the
table. The explanation follows underneath the tables.

Test cycle
Command Argument Function Reply
Insert: Name of type or test

instruction
Optional: followed by ‚|’
and then a serial number.
Example:
Insert: ABC|12345

Loads parameters for this
type and activates the test
instruction.

Inserted if successful,
Failed in case of error.
Possible faults: type/test
instruction unknown, or
previous test run not finished
(Remove missing).
Basic standard: 1 if successful,
0 if not.

Serial: Serial number Sets or changes the serial
number information

1

Timestamp: Date and time in format
yyyy mm dd hh mm ss
(yy in two digits is
understood as 20yy)

Sets the time stamp for the
current test run. (Default
time stamp is the time of the
Insert command.)

1 if format is valid
0 if format is incorrect

EndOfTest:
(*)

– End of all test steps.
Sound recording is stopped.

1 if successful, 0 in case of
error.

Remove: – Finishes a regular test cycle.
Measurement data is stored.

Done-x when successful with
x being the result code (see
command Result);
Failed in case of error
(typically because Insert is
missing).
Basic standard: 1 at success, 0
in case of error

Reset: –

Cancels the test run. No data
is stored. The system is reset
to initial state.

Reset OK

Basic standard: 1

Mode:
(*)

Name of test step
or $Nil

Activates a test step
Ends the current test step

OK at success, Error if not.
Basic Standard: 1 at success, 0
in case of error

Measure: ‚1’ or ‚On’
‚0’ or ‚Off’
‚x’ or ‚Cancel’

Starts respectively finishes
the acoustic measurement

On/Off/Cancel at success,
Error if unsuccessful.
Basic standard: 1 at success, 0
in case of error

Discom Test Stand Communication 2024-02-28 Page 6 of 29
UNRESTRICTED

Test Parameters
Command Argument Function Reply
TestProcedure:
(*)

Name of a test procedure Sets the test procedure, if
needed

1 if successful,
0 in case of error.

TestStandName:
(*)

Name for test stand Sets the name of the test
stand, if needed

1 if successful,
0 in case of error.

TestKind:
SetTestKind:
(*)

n (numerical code for test
run type)

Sets the “Test Kind” (like
“reference measurement” or
“trial run”

1 if successful,
0 in case of error.

SetTestProperty:
(*)

One or more test property
markers

Sets the according test run
properties

1 if successful,
0 in case of error.

Retrieving results
Command Argument Function Reply
Result: – Produces the evaluation result

(up to now)
Result x
Values for result code x:
1 = no defects found
0 = defects occurred
2 = no evaluation performed
3 = system error
Basic standard: only the result
code x

Result: Name of a test step Produces the evaluation result
for the given test step

Same as for the general
Result, but referring only to
the given test step.

ClearResult: None or name of a test step Clears all test results or all
results for the test step

1 (even if test step name is
unknown)

Retrieving reports
Command Argument Function Reply
Report:

Text Queries the measurement
report (general result line +
defect reports)

Text of measurement report,
line by line

Report: Count Retrieves the number of
defect codes

Number of defect codes
(0 if there are no defects)

Report:
(*)

TextLine n Retrieves defect description
for error number n

Description line n (from 1), if
existing; else “-“

Report:
(*)

Codes Queries the defect codes

One defect code per line (as
text). Finally always a line
with “0” is sent to mark the
end of the list.

Report:
(*)

CodesLine

CodesLine n

Queries the first 10 defect
codes.

Optional: number of digits
per defect code (standard is
4)

The first 10 defect codes in
one line, filled by “0”.
Example:
01230133900300000000....
contains defect codes 123,
133 and 9003.

Report:
(*)

CodeNo n Queries defect code no. n Defect code number n,
counted from 1. For n larger
than the number of defects,
the reply is “0”.

ReportDigest:

Format
optional line no.

Generates a formatted
defect report

Text of defect report, line by
line, followed by one extra
line <end>

Discom Test Stand Communication 2024-02-28 Page 7 of 29
UNRESTRICTED

ReportCodesMode:
(*)

Test step name Queries defect codes for a
single test step

Like ‘Report: Codes‘

Severity:
(*)

–
Optional: test step name

Queries the level of the
“severest defect”

0 = no defects found, else as
specified in the parameter
data base

SeverityText:
(*)

–
Optional: test step name

Queries a text for the
current severity

as specified in the parameter
data base

InstrResult:
(*)

Instrument name,
optionally followed by a
test step name

Produces the evaluation
result for this instrument
(and this test step)

1 = no defects found
0 = defects occurred

Status, special commands
Command Argument Function Reply
Status: – Queries the status of the

measurement system
0 = system not ready
1 = ready for “Insert”
2 = type/test instr. loaded

Ping: (optional: arbitrary text) Basic communication test,
buffer initialization

The text which was provided
as argument, or „OK“

PauseWaveRec: 1 / 0 1: pauses wave recording
0: continues wave recording

1 in most cases, 0 if not within
test run

SetComment:
(*)

Text Sets a comment text which is
stored together with the data
in the measurement archive

1

SetInfo:
(*)

Name Value Sets an additional
information “Name” to
“Value”. These entries are
stored in archives

0 = syntax error
1 = success

SetComponentInfo
(*)

Component Property
Value

Sets a ‘component
information’ (see remarks)

0 = syntax error
1 = success

Message: Text of message or “x” Shows a message window
containing the text. “x” closes
the window.

1

SetExtError:
(*)

(error code, optional
values)

Adds error messages to the
noise analysis results.

1 = success
0 = error

OperatorRemove: (see description) Opens a window where the
operator manually closes the
test run and can enter
additional information

1 = success
0 = error

Explanations for some commands
Reset: On Reset any running test is cancelled and a test run is ended without storing any results. The
wave file recording is deleted. The system returns to its initial state.

Insert: This command starts a new test run. The type name used with this command must match a type
name from the parameter database. (The special type names “$Repeat” or “$Again” may be used to
start a test run with the same type as before.) The Insert command is acknowledged with Inserted if
successful and Failed if not. (In Basic Standard protocol, the acknowledgements are 1 and 0.) The test
stand must check for the result and react accordingly!

EndOfTest: This command is optional but recommended. After EndOfTest, all test results are
complete and the final test result is computed. Results and reports can be queried afterwards. Recording
of wave data will stop at this point. If EndOfTest is not used, it will be called implicitly by Remove:.

Mode: this command is answered by Error (Basic Standard: 0) if no test cycle has been started (no
Insert:) or if the test step name is unknown. The test step name “$Nil” ends the current test step
without selecting a new one and pauses wave recording. It is not necessary to use Mode: $Nil before
selecting a new test step.

Discom Test Stand Communication 2024-02-28 Page 8 of 29
UNRESTRICTED

Measure: to start an acoustic measurement, a test run has to be active (Insert:) and a test step has to
be selected (Mode:). In most scenarios, the measurements are controlled by speed ramps, and you will
not need to use the Measure command.

TestProcedure and TestStandName: in the parameter database, several test procedures and test stand
names for the same type can be defined. (For example, there can be a short and a long test run.) The
TestProcedure: and TestStandName: commands are used to select one of these. They have to be
sent before the Insert: command and affect only the next test run.

The standard test stand name is predefined in the measurement program. If there is only one test
procedure, these commands can be omitted.

TestKind and SetTestKind: both forms of this command are equivalent. By this command, the “test
kind” or “type of test run” can be set. The test kind is stored together with all test results as a test run
property. The argument for this command is a numerical code for the desired test kind. Possible values
are: 1 = normal run, 2 = reference measurement, 3 = “special” measurement, 4 = test run.

The test kind set by this command is applied to the current test run and is automatically reset to “normal
run” for the next test. The command can be sent before the Insert: and has to be sent before
Remove:.

SetTestProperty: In addition to the “Test Kind” mentioned above, each test run can have several
additional properties like “Item was returned from customer”. Each property is represented by a letter in
the command argument. Available properties are “R” = “item was repaired” and “D” = “item was
returned from customer”. So the command SetTestProperty: R sets the “was repaired” property.
By preceding the character(s) by a minus sign (like –R), the properties can be removed. It is possible to
set or remove multiple properties with one command.

Severity: In the parameter data base, all error codes are assigned to groups with distinct severities. This
command finds the group of the “most severe defect” and sends it as answer. The reply to the command
SeverityText is specified in the parameter data base.

Result: a test run has four possible results: not OK, OK, no evaluation or system error1, corresponding
to the numbers 0, 1, 2 and 3. If desired, the measurement system can be set up to handle “system error
(3)” as normal “not OK (0)” and to handle “no evaluation (2)” as “OK (1)” or “not OK(0)”, as
necessary. See also page 14.

Optionally, a test step name can be given as an argument to get the result code for that specific step.

InstrResult: Using this command, evaluation results of specific „instruments“ can be retrieved. For
example, only the results of Crest evaluation can be queried. The first argument of this command has to
be an instrument name according to the list in the parameter data base.

As a second, optional argument a test step name can be given. For example, the command
“InstrResult: Crest 3-Up” retrieves the information if there occured a Crest defect (gear nick) in
test step 3-Up.

Report: Codes / CodesLine / CodeNr: The defect codes are reported sorted by defect priority. Doubles
are suppressed, that is, even if the defect with code 177 has been detected five times, only one defect
code 177 is reported. Error code counting starts with 1.

Report: TextLine: same as for Report: CodeNr above. The returned line contains the error
description text (from parameter data base) and the specification (test step, sensor etc.). Maximum line
length is 120 characters. If n is larger than the number of errors, the reply is “—“.

1 “No evaluation” is the result, if no measurement has been done – for example, right at the beginning of a test run.
“System error” signals a problem which prevents a normal test, for example a sensor defect. In this case, a OK/not
OK decision cannot be made.

Discom Test Stand Communication 2024-02-28 Page 9 of 29
UNRESTRICTED

ReportDigest: using this command the test stand can query the elements of the defect report (error
code, text, test step, …) in arbitrary order. The command syntax is
ReportDigest: Format

The ‘Format’ consists of a sequence of letters which describe the desired defect report elements. They
are

C E T M S V P D N
error
code

“external”
code text test

step specification value and
limit position difference

value – limit line no.

Example: the command
ReportDigest: CMT

produces the error code, the test step name and the error text, as in
583 3-D Order loud

The elements are separated by a whitespace character. A different separator character can be given as
the first character of ‘Format’; any non-alphanumeric character is allowed. Example:
ReportDigest: |TMS

Order loud|3-D|Spectrum Intermediate shaft Sync

The ReportDigest command produces as many lines as there are defect reports, plus an extra line
<end>

If there are no defect reports at all, only the line <end> is produced.

Optionally, a line number can be given as a second argument. Line numbers count from 1. If a number
is present, the command produces only this line of the defect report, or the line <end> if the number is
larger than the defect count (see command Report: Count).

Ping: This command is processed directly within the decoder without any interference with the test run
control. The answer is the text which is provided as argument, or “OK” if no argument was provided.

The Ping command can be used at any time to test the basic interface communication and, if needed, to
get a different reply from the measurement system than the usual digits “1” or “0” (e.g. in order to
initialize a reply buffer).

Important note: the Ping command is intentionally not locked against overlap with other commands. So
if the test stand sends an Insert command immediately followed by a Ping, the reply to Ping may
come before or after the acknowledgement to the Insert.

PauseWaveRec: In the usual setup, all sensor data are recorded into a wave file starting with the first
test step and ending with the EndOfTest command. Sometimes, a test run contains sections of
significant duration in between, which are of no interest for the acoustic analysis. At the beginning of
such a section, wave recording can be paused with PauseWaveRec: 1. This will reduce the size of the
wave files. At the end of the section, recording can be resumed with PauseWaveRec: 0, but will
automatically resume with the next Mode: command.

SetComment, SetInfo: The information set with these commands is stored in the “Additional
Information” section of the measurement archives. SetComment sets the predefined measurement
comment, SetInfo an arbitrary additional information. Example: SetInfo: MainShaftType Abc123
stores “Abc123” as value for the information “MainShaftType”. SetInfo and SetComment commands
have to be sent before Remove, and the Reset: command also resets all SetInfo-content.

SetComponentInfo: This command is for entering information about components of the test object, for
example the serial numbers of gears inside a transmission. The command has three arguments: an
‘Element Name’ (like “PrimGear”), a ‘Property Name’ (for example “GearSerial”) and a value (the
serial number of the gear). SetComponentInfo behaves like SetInfo in all other respects.

Discom Test Stand Communication 2024-02-28 Page 10 of 29
UNRESTRICTED

SetExtError: This command used to be handled by a plug-in but is now part of the standard command
set. For details read the plugin description (the plugin still exists and has extra functions) on page 16.

OperatorRemove: A dialog window opens in the measurement application where the operator must
manually confirm the test run. There are three choices: “OK” (test run is valid, equivalent to Remove),
“Calncel” (test run invalid, equivalent to Reset) and “Back” (test run not yet finished, return to test
steps). In addition, the operator can type in additional information in that window (e.g. a comment text)
which are stored together with the measurement results.

As an argument the command accepts a number which is a bit-wise OR of the options listed below. (For
example, options 1 and 4 combine to argument 5, so the command is OperatorRemove: 5.)
Option Function

0 Opens the window and waits for operator choice, but the OperatorRemove command
is immediately acknowledged to test stand control

1 The operator choice “Back” is not available

2 Operator cannot change the serial number

4 The OperatorRemove command is acknowledged not immediately, but delayed until
the operator makes a choice (and thus finishes the test run)

If no argument is given to the command, option 0 is used.

As long as the dialog window is open and the operator has not made a choice, no test run commands
(Reset, Remove, Mode, or a new Insert) will be accepted from test stand control.

Comparing Handshake-Standard and Basic-Standard
The table below lists the different replies for commands in Handshake Standard protocol as compared to
Basic Standard.

Command Basic Std. Handshake-Standard

Reset: 1 Reset OK

Insert: ABCD 1 / 0 Inserted / Failed

Mode: 1-A 1 / 0 OK / Error

Measure: On/Off/Cancel 1 / 0 On / Off / Cancel / Error

Remove: 1 / 0 Done-x / Failed (x = Result Code)

Result: x Result x (x = Result Code)

Discom Test Stand Communication 2024-02-28 Page 11 of 29
UNRESTRICTED

Examples
This example shows a simple test run with test stand commands and TAS answers:

Test Stand TAS Description
Reset: Reset OK Reset to start. Cancel any possible incomplete test runs.
Status: 1 Answer must be 1 before a test run may be started.
Insert: A17 Type „A17“ will be tested now.
 Inserted Parameters for „A17“ successfully loaded
Serial: 4711 1 Setting the serial number
Mode: Up Next test step: „Up“
 OK Acknowledgement: ready for „Up“

(drive a speed ramp)
Result: Up Querying the evaluation result for „Up“
 Result 1 Result for test step „Up”: no defects found
Mode: Down Next test step is „Down“
 OK (see above)

(ramp)

(call up other test steps with Mode command and execute ramps)
EndOfTest: 1 All test steps done. Stops sound recording.
Result: Result

1/0/2/3
Total test result: OK / not OK / no evaluation / system error

Remove: Done-1 Test cycle finished; overall result is OK
Report: … … Now, any kinds of reports can be retrieved
Reset: Reset OK Start next test cycle – continue as above.
Insert: A17 Inserted ...

Notes
• The system keeps all measured data, defect reports etc. until the next test run is started with

Insert. So even after Remove: any kinds of reports can be queried, even multiple times.

• The command Serial must be sent before Remove. It can be sent even before Insert and
can be repeated to change the serial number. The serial number can be any character string
(only whitespace is forbidden). There is no length restriction (besides memory space).

• The parameter data base contains all valid type names. All other type names are rejected at
Insert.

• The same is true for the test steps. Only test step names contained in the parameter data base
may be used with the Mode: command.

• The sequence of test steps during a test run is arbitrary. Test steps may be omitted or repeated
and measured in any order. If a test step is repeated by sending Mode: X once more, all results
and defects from a previous measurement of test step X are deleted.

• The measurement system is in most cases set up to check speed ramps automatically and start
and stop the measurement according to speed ranges. In these cases, the Measure: commands
are not needed.

• Querying the test result for individual test steps with the Result: command during the test run
is optional. This gives you the information if there was a problem in a specific test step.

• Always ask for the overall test result after EndOfTest (or Remove), even if you have checked
the results of individual test steps during the test run. There are errors (like sensor defects)

Discom Test Stand Communication 2024-02-28 Page 12 of 29
UNRESTRICTED

which are not associated with specific test steps, and you would miss these errors if you only
ask for the test step results.

• The reply times for all commands except Insert: and Remove: are far below 1 second. The
Insert: command may take more time (up to 10 seconds) if changes in the parameter data
base have to be updated or a new type is requested; otherwise Insert: takes no more than 1-2
seconds. The time required for execution of Remove: depends on the time taken by writing
and transferring the measurement data archive but should not exceed 10 seconds. See also the
remarks in “Command Execution Timing” on page 4.

Between commands and arguments and after these, any number of spaces is allowed.

Advanced Example
This example shows a test run with some additional, optional commands. Some of these are executed by
plug-ins (see “Command Decoder Plug-ins” on page 16 ff.). Replies of the TAS systems are not shown;
for more information about these and more details about the commands see the descriptions in the
previous chapter.

Reset:
SetInfo: BoxType 5A Set an additional information for storing in the result file
Serial: 1234567
TestProcedure: SpecialTest Instead of a normal test run, a „Special“ test run will follow
Insert: PQR
Ping: happy Is immediately answered with “happy”
Mode: 1-D

(drive a speed ramp)

Mode: TqR Test step „Torque Ramp“

(drive a torque ramp)

(call up other test steps with Mode command and execute ramps)

SGW: 4 5 Start of a gear switching operation from 4 to 5*
Mode: 5-C
EGW: End of gear switch*

(speed ramp)

Result: 5 Query result for gear 5 (assembling results from 5-D and 5-C)
Mode: $Nil This command sets the wave recording to pause (until the next

Mode command). This is recommended if there are long parts
without noise analysis within the test run. (other tests without noise analysis)

Mode: Steady In this example, “Steady” is a test step without speed ramp.
Measure: 1 Therefore, the measurement has to be started by a command…

(timer controlled test)

Measure: 0 …and also stopped by a command.
EndOfTest:
GetValueByName: StdRMS Query value for the measured quantity „StdRMS“*
SetExtError 567 33.8 25 Add test stand error 567 to the list of acoustic errors
Result: Always query the overall result!
Serial: 987654BX856432A Change serial number
Remove:

* These commands are handled by plug-ins; see “Command Decoder Plug-ins” on page 16 ff.

Discom Test Stand Communication 2024-02-28 Page 13 of 29
UNRESTRICTED

Test run timing
The graph below shows the timing of a typical test run:

The system records the sensor data into a wave file starting with the first Mode command and until
EndOfTest.

The command SetExtError is an extension explained in the following section. The test stand can send
error codes to the noise analysis system which are stored together with noise analysis results.

Discom Test Stand Communication 2024-02-28 Page 14 of 29
UNRESTRICTED

About the Result Codes
When testing a part in production, there are only two basic options: part can be sold (is OK) or cannot
be sold (not OK). But actually, there are two additional situations: no test was performed, or the test
could not be completed.

Accordingly, there are four result codes as answers to the Result: command:

Code Meaning Explanation

1 Test OK No defects were found (or transmitted using SetExtError). The tested
part can be sold.

0 Test not OK Defects were found. The tested part should not be sold directly but
repaired or recycled.

2 no evaluation

No test has been performed yet. This is the initial result at the beginning
of a test run.

If the system replies with 2 at the end of the test run, check whether any
Mode: commands have been successfully transmitted.

3 System Error

A problem occurred which makes it impossible to judge whether the
tested part is OK or not OK.

Sensor defects or missing speed signals are typical examples for system
errors. Stop testing and call an operator.

A test stand must handle all four possible results. (The reaction to a result code 3 should be typically a
stop and call for an operator.)

Although it is possible in the TasAlyser measurement software to map result code 2 to 1 and result code
3 to 0, this option is reserved for use with old test stands which are not capable of handling the system
error situation appropriately.

While it is possible to ask for the result for individual test steps (e.g., to stop the test run early if one test
step fails), it is vitally important that the test stand control software always asks for a general Result:
at the end of the test run (at some point after EndOfTest). Some errors like missing signals or internal
processing errors are not assigned to a normal test step and will pass unnoticed to the test stand if the
general Result: query is omitted.

Discom Test Stand Communication 2024-02-28 Page 15 of 29
UNRESTRICTED

Settings and Test Mode
To access the Command Decoder software module, go to the System Configuration window, unfold
the Evaluation branch, therein open the Command Center node and double-click on the Command
Decoder item:

The Command Decoder module shows in it’s settings
window the last received command and the reply.

If the checkbox write minutes is activated in the
dialogue, all received commands and all sent
acknowledgements are mirrored in the Output window.

The interface modules (specifically the serial interface) also offer the option of reporting the
communication traffic into the Output window. The report generated by the TAS Decoder is more
compact, so you may want to choose this if you only want minutes of the commands and not of the
detailed communication.

Under Command acknowledge, the option Dpm42 syntax switches the replies to the commands
from the Standard protocols documented in the tables above to the texts sent by the old Dpm42 Rotas
measurement systems. The option “–> [Command]” extends the Basic Standard replies by the
command which triggered the reply (e.g. “1 [Insert]”).

You can temporarily switch off the Decoder, for example if you want to test your PLC software without
having the TasAlyser react to it.

Discom Test Stand Communication 2024-02-28 Page 16 of 29
UNRESTRICTED

Command Decoder Plug-ins
A Decoder Plug -in is a software module which appears as a sub-module of the Tas Decoder in the
system configuration. A Decoder Plug- in extends the commands and functions of the system.

Plug- ins are used in a project specific manner, so any plug-in may or may not be contained in a project.

A plug-in may also change the behavior of one or all of the standard commands described above (for
example, change the replies form “1” to “<1>”) or introduce alternate names for standard commands
(for example “StartTestRun” instead of “Insert”).

Sending test stand errors: “ExtError” Plugin
Via these commands, test stand control can insert additional defect messages into the defect list of the
measurement program. These “external” defects are handled in the same manner as those generated by
the noise analysis, i.e. they generate a “not OK” result, are stored in archives and in the measurement
result database etc.

The “ExtError” Plug-In handles the command CheckForError, while SetExtError and ExtError
are part of the standard command set and do not require the plugin.

Command Argument Reply
SetExtError:
ExtError:

Defect-code
 Value Limit Position
, Defect-code…

1: Defect message accepted
0: not accepted, because no test running.
2: Defect-code unknown.

CheckForError: Defect code 1: code appears in list of current errors
0: code is not among current errors

In its basic form, the command is
SetExtError: 1234

Optionally, a measured value (floating point number) can be transmitted. A limit value and a position
may be added. These elements are separated by (any number of) spaces. Example:

SetExtError: 1234 14.7 10.0 1200

Values which are not given are assumed as zero.

Please note the following points:

• Both forms of the command (SetExtError and ExtError) are equivalent.

• The SetExtError: command is only allowed during a test run, that is after Insert: and
before Remove:.

• More than one defect code can be sent with one command. The defect codes have to be
separated by commas. Examples:
ExtError: 309 14.7 10.0 1200, 312 159.4 150.0 800

SetExtError: 309 , 312 , 433

• The defect code is a number 2. Each defect code must be set up in the parameter data base of the
measurement project, and the details (especially the associated text) have to be specified. The
choice of numbers for defect codes is completely free; they do not have to be sequential or start
with 1. Take care to avoid conflicts with NVH defect codes.

• The defect code used in the command does not necessarily have to be same number as the
associated defect code used in the measurement program. The association between ‘command
codes’ and ‘internal codes’ is also set up in the parameter data base. But in most cases, the
‘command codes’ will exactly equal the defect codes.

2 More precise, a positive whole number < 231

Discom Test Stand Communication 2024-02-28 Page 17 of 29
UNRESTRICTED

• It is not possible to send two defect messages with the same defect code (within one test run).
The second SetExtError: with a defect code already in use will overwrite the first message.
But it is possible to send any number of defects with different defect codes.

• By sending SetExtError: with a negative defect code (for example SetExtError: -309),
the respective defect entry can be deleted.

The SetExtError command inserts a defect message into the result data set of the current
measurement (and sets the overall result to ‘not OK’). It does not insert a measured value, even if you
provide a value with the command. The provided value only appears in the error information, not in the
measurement results. To insert a measured value, use the GetValues plugin described below.

Using CheckForError:, test stand control can query whether a specific error code appears in the list
of defect messages for the current test run. It works at any time during and after the test run.

Gear Shifting Plugin
The gear shifting plug-in handles the commands “SGW” (=”start gear switch”) and “EGW (=”end gear
switch”). These commands trigger modules for measurement of gear shifting processes like the gear
shifting noise or the gear shifting force.

The plug-in understands the following two commands:

Command Argument Function Reply
SGW: gear1 gear2 Starts measurement of gear

shifting process from gear 1 to
gear 2.
Example: SGW: 2 3

1: Measurement started
0: if the command was syntactically
wrong (e.g. missing argument).
2: if a previous SGW has not been finished

EGW: Finishes measurement of the
current gear shifting process

1: no defects found (OK)
0: defects found (gear shifting not OK)
2: no SGW command was sent before.

The SGW command requires the name of two gears (gear shifting from – to). The gear names are
“physical gears” (like R, 1, 2, 3…), not test step names, and have to be present in the parameter data
base. Valid names for idle gear are “N” or “0” (Null). The gear names are not checked by the plug-in, so
the reply to SGW: 88 99 will be 1 even if there are no gears 88 or 99 – only the measurement modules
will not produce any results.

The reply to EGW: is the evaluation result of the gear shift measurement. Because of the evaluation there
may be a slight delay (less than ½ second) between command and reply. The defect codes for any found
defects can be retrieved using the InstrResult: 5000 command.

Example:

 SGW: 2 3 Command: start shifting measurement for shifting from 2nd to 3rd gear

 1 Reply: Shifting measurement started

 EGW: Command: shifting process finished

 0 Reply: shifting measurement produced a not OK result

In the measurement program the option for “extended reply” can be activated. In this case, the reply to
EGW consists of three digits, separated by spaces:

EGW: → a b c (a, b, c each = 0 or 1)

Digit a shows the overall result (as before), digit b indicates the result for the gear-out measurement and
digit c the result for the gear-in measurement.

In the measurement application, a maximum measurement time for the gear shifting process is set
(normally 10 seconds). If the EGW command does not follow the SGW within this time, the measurement
is cancelled.

Discom Test Stand Communication 2024-02-28 Page 18 of 29
UNRESTRICTED

Ratio Test Plugin
This plug-in is necessary to trigger the ratio test and the differential test. It understands the following
commands:

Command Argument Function Reply
StartRatioTest: – Starts the ratio test for the current mode 1
StartDiffTest: – Starts the differential test 1
EndRatioTest:
EndDiffTest:

– Finishes a running ratio or differential
test

1: no defects found (OK.)
0: defects occured (not OK)

GetRatioValue: test step Queries the measured ratio value (measured value)
GetInvRatioValue: test step Queries the inverse ratio value (reciprocal value)

These commands start the ratio test or differential test. The ratio test checks for the ratio of the currently
active mode (gear). Both tests are finished with the EndRatioTest: command. The reply to
EndRatioTest: is the ratio test result. Because of the evaluation there may be a slight delay (less than
½ second) between command and reply. If the EndRatioTest: command is not sent, the test ends with
the next Measue: 0 command or end of next measurement ramp.

The commands GetRatioValue: and GetInvRatioValue: query the measured ratio value for a test
step. Example:

GetRatioValue: 3-D
4.186
GetInvRatioValue: 3-D
0.239

If the value is queried for a test step where no ratio has been measured, the result is 0.

DummyCommands-Plugin
The DummyCommands Plugin can modify test stand command texts and can reply to commands with
predefined answers, without further actions. Using this plugin, the processing of any command can be
simulated. Standard commands (like Measure:) can be overridden, too.

Command Argument Reply
(any) (irrelevant) as you wish

The list of recognized commands and answers are stored in the application file:
TasDecoderDummyCommands: {
 RESET <R1>:RESET
}

In this example, the plugin catches the test stand command “RESET:” and replies with “<R1>:RESET”,
while nothing else happens in the measurement program. In the list in the application file, the colon
after the command and all arguments (if any) are omitted.

Please note that the commands are case sensitive. The above example catches the command “RESET:”,
but not “Reset:”.

The reply to any command can be only one line of text. If the reply contains whitespace, the reply has to
be enclosed in quotation marks.

The plugin can also replace commands with other commands (note the different list name):
TasDecoderDummyCommandReplacement: {
 RESET Reset
}

This replaces the (wrong) upper-case “RESET” with the correct form “Reset”.

The plugin can also replace test step names in the Mode: command, and can override the type name
given in Insert commands.

Discom Test Stand Communication 2024-02-28 Page 19 of 29
UNRESTRICTED

Get/Set Values Plugin
The test stand computer can retrieve measured values from the TasAlyser measurement application or
set additional results. Values can be queried one by one or as a list.

To identify the measured values, each value gets a name called ValueKey. These names are set up in the
parameter data base in the form Alias Keys List. Only values listed in the according data base table can
be queried or set. In addition, when asking for a value, a test step has to be specified. When the test step
name is omitted, the result for the current test step is delivered. The GetValues plug-in supports the
commands:

Command Argument Reply
GetValueByName: ValueKey (test step) Numbers for this value.
GetValueKeys: - List of available ValueKeys as described below
GetValueList: (test step name)

List of values for the ValueKeys as described
below.

SetValueByName: ValueKey TestStep value
(unit limit position)

1 in case of success
0 if ‘ValueKey’ or ‘TestStep’ are not valid.

SetValuesFromFile: Filename 1 in case of success; 0 in case of errors

Querying one value
To get one result at a time, the test stand uses the command GetValueByName. This is answered by a
row with one or more numbers:

GetValueByName: RMS-Mix 3-D

2.45 2500 12.0

The parameter data base specifies for each ValueKey, how many numbers are produced. The meanings
of the numbers are (in this sequence): measured value, position information, limit value, learned mean
value. So in the above example, the measured value for RMS-Mix in test step 3-D is 2.45 and the limit
is 12.0. The meaning of the position information depends on the value. For example, for spectral values
the position is the spectral order.

If the queried ValueKey does not exist in the parameter database, the reply is “undefined”. If the
ValueKey exists, but no value has been measured in the according test step, the reply is “n.a.”.

If the test step name is omitted (as in “GetValueByName: RMS-Mix”), the current test step is used.

Querying all values
To get all values for a test step, the test stand uses the command GetValueList. To make
communication more compact, the reply does not contain the ValueKey-Name for each value, but a
KeyNumber. So first the test stand has to query the association between ValueKeys and KeyNumbers.
This is done with
GetValueKeys:

This command can be used at any time, even before Insert. The reply is the list of KeyNumbers and
ValueKeys:

<ValueKeys>
number1 "Name1"
number2 "Name2"
...
</ValueKeys>

Example:
<ValueKeys>
7 "RMS-Mix"
44 "LKon_H1"
</ValueKeys>

Discom Test Stand Communication 2024-02-28 Page 20 of 29
UNRESTRICTED

The ValueKey-Names are always enclosed in double quotes. Only those ValueKeys which have not been
set to ‘inactive’ in the parameter data base appear in the list. So, the list may be empty. The
KeyNumbers are assigned automatically by the parameter data base, so they may not be contiguous, and
the list is not sorted. The associations may changes between test runs, so it is recommended to re-query
the ValueKeys and KeyNumbers before each test run.

To get all values for a test step, the test stand uses the command
GetValueList: (test step name)

If the test step name is omitted, the current test step is used. The reply is a list of KeyNumbers with
according values (and, if set in the parameter data base, position, limit and learn data):

<Values (test step)>
key1 value1 (position1) (limit1) (learned1)
key2 value2 (position2) (limit2) (learned2)
...
</Values>

Example:
<Values 4-NZ>
44 75.00 98.34 88.62
7 2500.00 3.78
</Values>

KeyNumbers and values are separated by spaces. The list is not sorted by KeyNumbers, and the list may
be empty.

The <Values>-List contains all values which appear in the form Alias keys list in the parameter data
base and which should be present in this test step. If a value cannot exist in the current test step (like a
value for the reverse gear, which only exists in reverse gear), it does not appear in the list. If the value is
expected but was not measured (for example because the target speed was not reached), “n.a.” appears
in the list:

<Values 4-NZ>
...
44 n.a.
...
</Values>

Setting a value
The test stand control can send values to the measurement system which will then be stored together
with all other measurement results. The command is

SetValueByName: ValueKey TestStep value (unit) (limit) (position)

Unit, limit and position values are optional. Example:
SetValueByName: OilTemp Function 89.4 °C 100

sets a predefined value of 89.4 °C for “OilTemp” in the test step “Function” (both have to be prepared
in the parameter data base in advance). The limit is 100.0, a position is not provided.

Only unit names predefined in the TasAlyser software are possible; the list can be found e.g. in the
parameter database in the sensor signal definition form.

SetValueByName has to be used after Insert: and before Remove. Note that all elements of the
command have to be separated by spaces, comma or semicolon.

Setting values from file
Instead of setting values one by one using SetValueByName:, test stand control can generate a text file
with multiple values and have that file imported into the TasAlyser results. The command is

SetValuesFromFile: Filename

Discom Test Stand Communication 2024-02-28 Page 21 of 29
UNRESTRICTED

The ‘Filename’ can be an absolute path, or relative to a default directory which is defined in the Plugin
settings in TasAlyser.

The file given in the command is a text file which contains one value per row with the same syntax as
for SetValueByName (see above):

ValueKey TestStep value (unit) (limit) (position)

ValueKey (name) and Test Step are defined in the Discom parameter database. Unit, limit value and
position value are optional or can be replaced by a dash – if not used. The elements of a text row are
separated by whitespace, comma or semicolon. Here are examples for valid rows (assuming the
existence of the used names for Value Keys and Test Steps):

Fir1 3-D 17.5 - 20.0

Fir1, 3-C, 22,7; -; 25

OilTemp Function 89.4 °C

Empty lines are allowed, and lines starting with a semicolon ; are considered to be comment lines.

The command is acknowledged with 1 after the file has been successfully processed or with 0 if an error
occurred. After successful processing, the file is deleted.

The text file can use either ASCII or UTF-8 (with BOM) text encoding.

The command can be used multiple times in each test run. If values occur twice, the last instance will
overwrite the previous. Be aware that with the start of measurement for a test step, all previous values
for that test step are deleted, including those inserted by SetValue commands. Therefore, use
SetValueByName and SetValuesFromFile only after the according test steps have been measured,
or for test steps which do no regular measurement.

Setting vectors from file
It is possible to set vector data (like a spectrum) using the file interface. (This feature is not available for
the direct SetValueByName command.) To set a vector, start a line in the file with $V and use this
format:

$V ValueKey TestStep x0 delta dlen x-unit y-unit

After this there have to follow exactly dlen lines with one floating point value per line.

x0 is the first x position of the vector (will be 0 or 1 in many cases), delta is the x spacing of the values,
and dlen the total number of values. For example, a spectrum might have x0=0, delta=0.5, dlen=512, so
the highest x value will be 255.5.

When specifying the ValueKey in the parameter database, you have to use for the “Instrument” clavis
element an instrument which generates vector data, like Spectrum or Time Signal.

Extras
The GetValues plug-in knows two extra commands not directly related to measured values:
EndMode: - 1: test step finished; 0: error
LookupResource: Source Resource-Name Value line from resource file

The command EndMode finishes a test step without entering any other test step and is equivalent to the
command Mode: $Nil

LookupResource queries a line from the application internal parameter files. Possible sources are
“Application”, “Messages” and “Status”.

Discom Test Stand Communication 2024-02-28 Page 22 of 29
UNRESTRICTED

Trigger Parameters Plugin
In the measurement system, measurement of ramps over control values (like, for example, a speed ramp
from 1500 to 3200 rpm) is controlled by so-called triggers. The trigger parameters (like the setting
“speed ramp in 3rd gear drive goes from 1500 to 3200 rpm”) are managed within the parameter data
base.

Using the SetTriggerParams plugin, test stand control can change the trigger parameters. The command
is SetTriggerParams.

As a second function of this plugin, the calibration file can be switched.

Command Arguments Reply
SetTriggerParams: trigger name

test step
start vaue
end value
step width
sensor
dimension

?: syntax error (e.g. missing argument)
0: not executed (e.g. wrong name)
1: parameters set
(If the option ‘Dpm42-Syntax’ is switched on, the
replies are preceded with <R>SetTriggerParams: .)

SelectCalibration Calibration file
name (without file
extension)

?: missing argument
0: file does not exist
1: success

The first four arguments are mandatory; the last three can be omitted (from the back). Example:
SetTriggerParams: Standard 3-D 1500 3200 25

sets the trigger parameters for trigger “Standard” in test step “3-D” to a ramp from 1500 to 3200 with a
step width of 25. The sensor is unchanged as set in the parameter data base and the “dimension” is
implicitly 1. If the sensor must be given, the example could look like this:

SetTriggerParams: OrderTrack 3-D 1500 3200 25 InSpeed

Some important hints:

• It is only possible to change trigger parameters, but not to create them. Trigger parameters for
any trigger name and test step have to be set up in the parameter data base before they can be
changed with the SetTriggerParams command.

• The SetTriggerParams command must be sent at any time after the Insert command, but
before the Mode command of the test step for which the parameters shall be set. (That is, you
have to send “SetTriggerParams: Standard 3-D …” before you send “Mode: 3-D”.)

• The parameters are valid until the end of the current test run (or until they are changed again
with a different SetTriggerParams command). So if a test step should be repeated, it is not
necessary to send the SetTriggerParams again.

• For rising ramps (speed drive ramps) the “start value” is less than the “end value” (like 1500
and 3200). For falling ramps (speed coast ramps), the start value is higher than the end value (as
in SetTriggerParams: Standard 3-C 3200 1500).

• Names of triggers and sensors (if used) must match the names from the parameter database.
Check the Trigger Parameters form there.

Caveat: the trigger parameters have an immediate influence on the measurements. So changing the
trigger parameters will almost certainly lead to different measurement results (different values and
curves) and thus produce different evaluation results!

Discom Test Stand Communication 2024-02-28 Page 23 of 29
UNRESTRICTED

SelectCalibration
The argument of the SelectCalibration command is the file name of the according calibration file,
without file extension. The calibration files are typically located in the Locals folder within the project
folder and are xml files. Example: the command

SelectCalibration: Calib-X1

activates the calibration stored in Calib-X1.xml.

The command must be used before the Insert command.

Sensor Configuration Plugin
In some projects, the sensors in use change between test runs. For example, there may be more than one
noise sensor, but for each individual test, only one of these is used. In these situations, the project has a
number of so-called sensor configurations defined in the parameter data base. It is possible to assign a
sensor configuration with each test object type in the data base, so type-dependant sensor switching can
be achieved solely by defining it within the parameter data base.

If the sensor configuration is not type dependant but is switched by the test stand, the test stand can tell
the measurement system which sensor configuration to use for the next test run. There are three
equivalent forms of this command:

Command Arguments Reply
SetSensorConfiguration:
SetSensorConfig:
SensorConfiguration:

configuration name

0: not executed (e.g. wrong name)
1: configuration set

The single argument of this command is the name of one of the sensor configurations defined in the
parameter data base.

The command has to be sent before the Insert:-Command and is valid only for the following test run.

When this command is used, TasAlyser will automatically create an ‘additional info’ entry in the
measurement result files containing the sensor configuration name which was selected.

The plugin supports one additional command which can be used in conjunction with the Signal Guard
module. That module raises an alarm when a sensor signal peak value surpasses a given limit. This
alarm can be used for an emergency stop of the test stand.

Command Arguments Reply
SignalGuardSetActive: 0 / 1

Off / On
1

With command argument 0 (Off), Signal Guard is disabled until the command is used again with
argument 1 (On) or until the next test run starts.

Discom Test Stand Communication 2024-02-28 Page 24 of 29
UNRESTRICTED

RecorderControl Plugin
Using this plugin and the WaveRecorderControl command, the recording of sensor signals in wave
files can be controlled.

In normal operation, wave files are recorded automatically by the TasAlyser measurement application.
For special applications where the automatic control is not applicable, this command can be used to
control recording.

Command Arguments Reply
WaveRecorderControl: (Action code) 1 or 0, meaning depends on command

These Action Codes (each one in three variations, as number or name) are available:

Aktion code Action
1 / AUTO / Auto Switch on or off automatic recording by TasAlyser. A second argument

specifies which: 1/ON/On or 0/OFF/Off.

Reply is the previous state. If no second argument is given, the reply value
shows the current state without changing anything.

2 / REC / Rec Status request: is a recording under way (reply 1) or not (reply 0)?
3 / START / Start Starts a new recording. This is only possible within a test run (after

“Insert:”). The recording ends automatically with the test run
(“EndOfTest:”) and can be ended at any time with action code 6.

As second, optional argument a text can be given which will be inserted
into the file name.

4 / PAUSE / Pause Pause recording.
5 / CONT / Cont Continue recording.
6 / END / End End recording and save wave file.
7 / DEL / Del Stop recording and delete wave file.

Actions 4 to 7 interact with TasAlysers automatic wave recording. For example, action code PAUSE
will also pause an automatically started recording, not only those started with action code START.
Action code END stops any recording, independent on how it was started. The reply to actions 3 to 7 is
1 if the action was performed successfully, and 0 if not (e.g., PAUSE when there was no recording
running).

Action code START has no effect when there is already a recording under way.

Usage example: a recording is started, with text “MySong” getting part of the file name. Then recording
is paused, later continued and finally ended.

WaveRecorderControl: REC MySong

WaveRecorderControl: PAUSE

WaveRecorderControl: 5

WaveRecorderControl: End

Within a test run, any number of recordings can be done. The file name of a recording is built according
to the rules specified in the WaveRecorder module in TasAlyser. The time stamp element of the file
name will be the time when recording started, not the time when the test run started (as for automatic
recordings).

Discom Test Stand Communication 2024-02-28 Page 25 of 29
UNRESTRICTED

Appendix: Serial, Profibus and UDP Communication
As was described in the first part of this documentation, the Rotas system and test stand control (called
‚PLC‘ in the following) always communicate by the exchange of text messages.

This exchange can be done using various physical connections. The most simple, robust and most
widely used method is a standard RS232 serial connection. Another widespread method is Profibus
communication. This appendix contains hints regarding the commonly used communication methods.

Serial Communication
In spite of (or because) the serial connection being from the old days of computer technology, it is hard
to beat regarding simplicity and robustness. This success story found its continuation in the Universal
Serial Bus – USB – which is also used for connecting the TAS hardware to the
measurement PC. Even modern computers without built-in serial port can easily be
equipped with a serial-to-USB converter. And transfer speed is no issue with current day
computers: the short text messages and commands for measurement control are
transferred virtually instantaneous.

Settings
Setup of serial communication in the measurement program is quite simple: open the
docking window System Configuration, expand the Evaluation branch and within it
the node Command Center (see also the picture on page 14). Among the sub-nodes of
that branch you will find the module for serial communication (with the picture of an
old-style telephone):

Double-click on the entry to open the window of this module:

Press the Settings button to set up the parameters for the
serial port (port number, baud rate and more). Standard
settings are 9600 Baud, no parity, 8 data bits, 1 stop bit, no
handshaking:

Reset does a reset of
the selected serial
port. You will get an
error message at
TasAlyser startup, if
the selected serial port
is not available.

To test the communication, enter a text into the box below Test:
and press Send. The text will be sent out to the serial port.
Pressing Receive will simulate an incoming message.

In the docking window “Output” you can monitor the serial
communication and read all tests being sent out or coming in (see page 3).

Basic serial interface test
If the serial communication does not work out of the box, you can use the extra software tool VcTerm
to do more tests. It is located in the Discom installation folder, which usually is C:\Program Files
(x86)\Discom\bin.

Discom Test Stand Communication 2024-02-28 Page 26 of 29
UNRESTRICTED

Quit the TasAlyser program to free the serial port and then start VcTerm.exe. In the menu CommPort
you can set the serial port properties and then open the port. In the main window of VcTerm, all texts
coming in are echoed, and each line of text you type and terminate by pressing <Enter> is sent out via
the serial port.

Profibus/Profinet Communication
For Profibus/Profinet communication, the measurement PCs are equipped with a CIF Profibus or CIFx
Profinet card from the company Hilscher. We will send you the corresponding GSD file upon request.

First, you have to set up the card. This is done using the program Sycon (Profibus) or netx (Profinet)
from Hilscher. Set up the card using the following information:

• Adresses and areas for communication have to be set in the way determined by the PLC.
“Input” and “Output” are from the PLC point of view. If in the PLC “Input” is defined first, it
has to be the same in the Sycon program.

• The communication buffer must be set to sufficient size. If you do not plan to transfer complete
measurement report texts, a buffer size of 64 bytes is well enough. The buffer data type (bytes,
words, double words) does not matter3 but has to be set the same on both sides.

• Communcation master: you have to enter the address of the Profibus master (usually the PLC).
It is not important, which card type you select here.

For further information please refer to the Hilscher documentation.

Communication between PLC and TasAlyser works by exchanging text messages written into the
Profibus buffers. The buffer is filled using the following layout:

Byte 0 Byte
1

Byte
2

Byte
3

…

counter text
length
including
0 byte

message text

(no cr/lf at the end!)

0
(NULL)

The sending communication partner first writes the message text into the buffer, starting at byte 2. The
text has to be terminated by a zero byte. In buffer byte 1 the total length of the message is stored,
including the zero byte.

Please note that the text may not contain zero bytes. Example: if the text buffer contains the byte values
65, 66, 67, 0, 68, 69, 0 and the length byte the value 7, TasAlyser will still only see the text “ABC”,
because the zero byte terminates the text. The text buffer should be initialized with byte values 32
(space) if necessary. Buffer content 65, 66, 67, 32, 68, 69, 0 will be understood as “ABC DE”.

Now there should be a short wait time (25 to 50 milliseconds, one PLC cycle or similar), during which
the Profibus will transfer the complete buffer contents.

Finally, the counter in buffer byte 0 is increased. (After reaching 255 the counter will restart at 0; only
changing the counter matters.) The counter change validates the completeness of the message and
signals the communication partner to start processing it.

Note: in the settings of the Profibus communication module in the TasAlyser software the use of the
counter can be switched off. If this was accidentally done, there will appear one or two additional
characters in front of the message text.

3 Please note: the contents of the buffer is always the same, independent of the selected data type.

Discom Test Stand Communication 2024-02-28 Page 27 of 29
UNRESTRICTED

UDP Communication
The test stand software sends UDP packets targeted to the measurement application, and receives UDP
packets as answers. The data contained in the packets are the command texts (8 bit ASCII), followed by
a terminating Null character. The data length of the packets is thus equal or greater than the command
text length + 1. The measurement computer’s replies ar of the same format.

In the TasAlyser measurement application, the IP address of the partner computer as well as the port
numbers have to be set up. To do this, open the System Configuration window, expand the
Evaluation node and the sub-node Command Center:

Double-click on UDP Interface to open the settings window for this
module:

In the upper part Local computer / TasAlyser application, you
select the network adapter (see next section) and local port number
(see comment below).

In the lower section Partner computer / Remote application,
you have to enter the IP address of the test stand control computer
and the port number on which it listens for TasAlyser’s replies. You
can use the test stand control computers name instead of the IP
address (but without any \\ or similar).

If TasAlyser and the test stand control software are running on the same computer, the settings may look
like this:

Here, again, you may use the name
localhost instead of the IP address
127.0.0.1.

The local communication port number 9601 can be changed if necessary. It has been chosen with care
and usually should be free – please look up “List of TCP and UDP port numbers” in Wikipedia:
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.

TasAlyser will start listening for commands on this port right after the application has been started and
is ready.

http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Discom Test Stand Communication 2024-02-28 Page 28 of 29
UNRESTRICTED

Finding the right network adapter
The measurement computer can be equipped with several network adapters: for example, two LAN
cards, WiFi, a VPN adapter and others. One of these has to be selected for UDP communication.

The UDP Module’s settings window lists all available adapters (limited to those configured for IPv4,
because TasAlyser uses IPv4 only).

To get more information about the available network adapters, open the measurement computer’s
Control Panel and go to the Network and Internet section. Open the Network and Sharing
Center. On the left hand side, in the list of available commands, you will find Change adapter
settings. Click on this command, and you will be presented with the list of existing network adapters.
Look up the settings for each adapter to find the one which connects to the test stand computer.

After choosing a new network adapter in TasAlyser, Windows Firewall may become suspicious. You
may see the warning that it has blocked TasAlyser and the request to allow network communication for
TasAlyser. This you have to grant to make UDP communication possible.

Checking the Firewall
The Windows Firewall will by default block any unknown application which tries to establish a network
communication using non-standard ports (like port 80, which is used for http). When TasAlyser is
started on a computer for the very first time with any project that contains UDP communication, the
Windows Defender will pop up only once and ask whether this application shall have permission to
communicate through the firewall.

When UDP communication does not work although all
settings seem to be correct, check the Firewall settings.
Open the Windows Control Panel and go to the Security
section:

In that section, select “Windows Security”, and then from
the option on the right side “Firewall & Network Protection”:

Discom Test Stand Communication 2024-02-28 Page 29 of 29
UNRESTRICTED

Inside “Firewall & Network Protection”, click on “Allow an app through firewall”. This will open a new
window with a list of applications using network communication. Scroll down to TasAlyser and set the
check mark at the according network type – in most cases, this will be the “private” network:

	Introduction
	General test run sequence

	TasAlyser command protocol
	Protocol Variants
	Observing the communication
	Command Execution Timing
	Timing check and Log file

	Standard Command Set
	Test cycle
	Test Parameters
	Retrieving results
	Retrieving reports
	Status, special commands
	Explanations for some commands
	Comparing Handshake-Standard and Basic-Standard

	Examples
	Notes
	Advanced Example
	Test run timing

	About the Result Codes
	Settings and Test Mode
	Command Decoder Plug-ins
	Sending test stand errors: “ExtError” Plugin
	Gear Shifting Plugin
	Ratio Test Plugin
	DummyCommands-Plugin
	Get/Set Values Plugin
	Querying one value
	Querying all values
	Setting a value
	Setting values from file
	Setting vectors from file

	Extras

	Trigger Parameters Plugin
	SelectCalibration

	Sensor Configuration Plugin
	RecorderControl Plugin

	Appendix: Serial, Profibus and UDP Communication
	Serial Communication
	Settings
	Basic serial interface test

	Profibus/Profinet Communication
	UDP Communication
	Finding the right network adapter
	Checking the Firewall

